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ABSTRACT 

mr- . 
L I I ~  underlying basis of the extreme accuracy of the double-Gauss 

quadrature formula devised in the method of discrete ordinates is uncov- 

ered in an alternative solution of the transfer equation. The Schwarz- 

schild-Milne integral equation is solved by approximating the exponential 

integral kernel with a finite sum of exponential functions. A moment 

method is used to provide the best fit to the kernel. The constants that 

result are identical to those following from the choice of a double-Gauss 

quadrature formula in the discrete ordinate method. The integral equation 

formalism is then applied to the non-gray atmosphere problem. 
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I. IhTRODUCTION 

The method of discrete ordinates developed by Wick (1943)  and Chandra- 

sekhar (1950) is a powerful technique for the solution of transfer equa- 

tions. A critical factor is the choice of a proper quadrature formula to 

replace the integration of radiation intensity over direction. Sykes 

(1951) obtained results of extreme accuracy by splitting the interval and 

fitting the Gaussian formula separately over the upward and downward 

directions. 

The physical basis for the success of the double-Gauss method is laid 

bare by an alternative solution of the equilibrium transfer equation which 

does not involve the intensity. The Schwarzschild-Milne integral equation 

is approximately solved by expanding the kernel transmittance in a sum- 

mation of exponential functions. The characteristic equation that results 

is formally identical with that of the method of discrete ordinates. The 

specification of a "best fit" of the kernel and its approximate represen- 

tation by equating moments, leads to a set of equations which reduce to 

the Legendre polynomials of the double-Gauss method. Thus the ad hoc 

choice of the double-Gauss formula is justified as providing the optimum 

fit of the exponential integral kernel by a finite sum of exponential 

functions. 
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11. MOMENT METHOD SOLUTION OF THE SCHWARZSCHILD-MILNE EQUATION 

The transfer equation specifies a relation between the radiation 

intensity and Planck source function which, for a plane-parallel, non- 

scattering, gray atmosphere may be written as 
I 

= I(T,~) - B ( T )  . dT 

The imposition of the equilibrium constraint 

1 

-1 

permits the elimination of either of these dependent variables. 

by substituting the source function (2) into Equation (1) we obtain the 

equilibrium integrodifferential equation of transfer 

Thus, 

1 

The method of discrete ordinates solves the problem approximately by 

converting the integrodifferential equation into a system of 2n linear 

differential equations. This is done by replacing the integration over 

direction with a suitably chosen quadrature formula 
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Chandrasekhar's (1950) use of a Gaussian quadrature formula was 

criticized by Kourganoff (1952) who preferred the Newton-Cotes method. 

Sykes (1951), meanwhile, obtained results of extreme accuracy by splitting 

the interval and fitting the Gaussian formula separately over the ranges 

( - 1 , O )  and ( 0 , l ) .  We now demonstrate the physical basis underlying Sykes' 

choice of a -double-Gauss method, showing how it represents the optimum 

choice of a polynomial quadrature formula. 

Returning to Equations (1) and (2), we can use the equilibrium con- 

straint alternatively to eliminate the intensity from the integral form 

of the transfer equation yielding [see Chandrasekhar (1950)] 

W 

B ( T )  = fJB(t) El(lt-.rl) dt , ( 5 )  
-W 

the Schwarzschild-Milne integral equation. The direct solution of this 

equation is difficult. The form of the kernel 

suggests an approximate expansion into a summation of more tractable 

exponential functions. 

Equation (5) becomes, with this kernel approximation, 

W n 
a - 1  t-5 1 /Pi 

dt . (7) i 

I-Li 
B ( T )  = 'l B(t) 1 - e 

2 
-00 i= 1 
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The application of the Laplace transform using the Faltung theorem 

[Sneddon (1951)l leads directly to 

where 

The requirement that B (k) # 0 then yields as the characteristic. 

equation 

n 
1 a i 

2 2  z 1 -pik i= 1 

= o ,  1 -  

2 whose 2n - 1 solutions consist of a double root at the origin k = 0 

and paired roots at k = _+ k a . 

We obtain the general solution for the equilibrium source function 

by performing an inversion of Equation (8) with the poles along the real 

axis given by the roots of the characteristic equation. Thus 
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The constants by Q, La, and L can be determined by boundary conditions 

in either of two ways. For a semi-infinite atmosphere the Wiener-Hopf 

technique can be used to express the constants directly as residues of 

the H-functions (King 1955), yielding 

-0c 

b = 3F/4 , 

n n- 1 - 

L = o  y 
-a 

where the H-function is given in this approximation as 

Alternatively one can determine the constants by the requirement that 

B ( T )  = 0 for T < 0. This constraint leads to a set of linear simultaneous 

equations to determine the n constants Q, La. 

elimination of constants we are led then to relations (12). 

Upon using the method of 
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The characteristic equation (10) and constant relations (12) derived 

from the Schwarzschild-Milne equation are formally identical to those 

obtained by Chandrasekhar (1950) using the method of discrete ordinates. 

This is not surprising since the two approaches are transformations of 

the same problem. 

The result is more than an elegant identity. Firstly, we have derived 

the equilibrium source function B(T)  directly without recourse to any 

auxiliary function such as the radiation intensity. More importantly, 

however, we have in the kernel approximation, Equation ( 6 ) ,  an algorithm 

for the specification of the best quadrature formula. 

We return to the kernel approximation and determine the weights a i 

and directions p by equating moments of the kernel with its series 

approximation. Thus 

i 

yielding the following system of nonlinear equations to determine the 

i’ n 1 7  * - -  , %-I 
2n constants a . . .  a and p 

n 

( i = O ,  1, . . . ,  2n-1) . (15) 1 
a p’ = E ~ + ~  (0) = - 1 i i  k!+1 

i=l 
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111. :;(XUTIC!N OF MOMENT EQUATIONS 

A method for solving moment equations of the type 

n - 
(1 = 0, ..., 2n-1) , (16) 

i= 1 

has been given by Chandrasekhar (1950). He shows that if coefficients 

c ( j  = ' O ,  ..., n-1) are defined by the linear equations 
j 

n- 1 
P 

j =O 

is one of the n roots of the polynomial pi then 

n-1 
F(x) E X  n + 1 c x j 

j 
j=O 

The coefficients c can be eliminated from (17) and (18)) with the result 

that F(x) is a multiple of the polynomial 
j 

where c(x) is the (n+l) x (n+l) matrix 

L = x ( a  = 0, . . . ,n). (20) bna % = bj+k (j = 0, ..., n-l), 
j J  

The determinantal equation @(x) = 0 in which we have from (15) 

1 
1 e 

I - -  = 1 d x x  ba d+l 
0 

7 .  



can be simplified (Muir 1960) to the form 

The substitution 

1 
2 x = -(1 + X) 

immediately reduces ( 2 2 )  to the equation 

where P is the Legendre polynomial of order n. Thus, we have arrived 

at the same result as the Sykes double-Gauss method: 

n 

where is one of the n roots of the Legendre polynomial P . i n 

Since the transformation ( 2 3 )  maps the interval (-1, 1) onto (0, l), 

Sykes (1951) noted that the double-Gauss formula is merely the Gauss 

formula applied to the transformed interval. We will now demonstrate 

that the linear mapping ( 2 3 )  correctly transforms the moment equations 

(16) - 

If we insert ( 2 3 )  into the definition 
1 
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and use the moment equations (16) with (24) we obtain the transformed 

equations 

- 
where a = 2a . In other words, a solution to the equations (16) for 

the interval (0, 1) is a linear function of the solution to (25) on the 

interval (-1, 1). 

i i 

The solution to (25) with 

- 
bd = 0 ( 4  odd) , 

- - -  (e even) , 
bd - 4+l 

is the familiar Gauss formula (Chandrasekhar 1950). Hence, the weights 

a are given by i 

Writing (26) in the form 
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reveals the  s tandard  p r e s c r i p t i o n  of a a s  a quadra ture  weight.  i 

The c h a r a c t e r i s t i c  Equation (10) has  been solved up t o  the  fou r th  

approximation. The r o o t s  pi and koc a long  with the  der ived  cons t an t s  Q 

and L from (12) are given f o r  reference i n  Table 1. As a n  i n d i c a t i o n  

of t he  supe r io r  accuracy of t he  double-Gauss method, i n  Table 2 we 

compare t h e  fou r th  approximation f o r  q ( 7 )  and H(p) with  the  exac t  r e s u l t  

from Kourganoff (1952; Tables 33, 34, p.  138). 

a 
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I V .  EXTENSION TO NON-GRAY ATMOSPHERES 

The Schwarzschild-Milne integral equation approach shows to best 

advantage in an extension to the non-gray atmosphere problem. The flux 

transmittance for a narrow band of width Av consisting of many lines, 

yet small enough so that the Planck function is sensibly constant, is 

defined as 

Av 0 

0 0  

where h = K / K ~  is the ratio of the arithmetic mean and monochromatic 

absorption coefficients. 

By analogy with the gray case we can define a hierarchy of non-gray 

transmittances by 

obeying the relation 

13 



The non-gray Schwarzschild-Milne equation becomes 

a, 

-a, 

As we continue to exploit the analogy, the form of the equation suggests 

that we expand the kernel in a summation of exponential functions 

where the a and p are now "generalized" weights and roots. i i 

Equating moments as before, these constants are determined by the 

system of 2n nonlinear simultaneous equations 

n .- 

aipi a -  - ea+2 (0) Ji B, ( a  = 0, 1, ..., 2n-1).(32) 
i= 1 

Thus the non-gray problem is reduced simply to the determination of new 

constants specified by different moments. Using relation (27) we may 

tabulate these as 
\ 

2 - e2(o) = 1, e3(o) = 4, e4(o> = h / 3 ,  e p  = / 4 , . - . ,  

14 



As an example consider an Elsasser band model consisting of an equally- 

spaced array of identical Lorentz lines whose monochromatic absorption 

coefficient is 

where S, a, and d are the line intensity, halfwidth, and spacing. By 

integrating from line center to center we obtain the relations 

- 
2 (35) s -  x = - -  K K = -  - coth B, i2 = d’ 

cosh28 + % 
2 Kh sinh f3 

where , the non-grayness parameter, is the ratio of the arithmetic and 

harmonic means of the absorption coefficient and f3 = 2xa/d is the ratio 

of line half-width and spacing. Any deviation from grayness leads to a 

X in excess of unity. 

Although the pi in Equation (32) are no longer roots of the Legendre 
* 

polynomials as in the gray case, it is not difficult to solve the equation 

set explicitly in the n = 2 approximation. Doing this we find p 1’ p2 

as roots of the quadratic equation 

with the root of the characteristic equation given by 

15 



The most interesting result, identical in all orders of approximation 

and hence exact, is the Hopf-Bronstein relation generalized now for a 

non-gray atmosphere. Thus 

The remaining constants in this approximation are determined as 

16 



V . CONCLUSIONS 

The double-Gauss quadrature formula used by Sykes (1951) has a sound 

physical basis in providing the optimum fit of the kernel in the 

Schwarzschild-Milne integral equation by an exponential function series. 

The power of the alternative integral equation formulation is demonstrated 

by the ease in the extension to treat non-gray atmospheres. 

We are grateful to Robert V. Sillars for the calculations leading 

to Tables 1 and 2. 

The research reported in this paper has in part been supported by the 

National Aeronautics and Space Administration under contract NAS5-3352. 
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